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Quasiclassical descriptions of quantum systems based on 
coherent states: product formulae 

P Kasperkovitz 
Institut fiir Theoretische Physik, Technische Universitat, Wiedner Hauptstr. 8-10, 
A-1040 Wien, Austria 

Received 11 May 1990 

Abstract. If the state space of a quantum system is finitedimensional it may be 
considered as carrier space of an irreducible unitary representation of some compact 
Lie group 9. In this case the set of operators may be put in one-to-one correspondence 
with a class of functions defined on the group parameters (Q representation). For 
these functions a binary relation is derived that corresponds to the product of two 
operators. The general formalism is applied to F = SU(2) (spin coherent states) and 
this result is used to derive a product formula for the non-compact Heisenberg-Weyl 
group (coherent oscillator states). 

1. Introduction 

To describe the properties of a quantum system one needs (i)  a star-algebra, i.e. a non- 
commutative algebra A that  admits an anti-automorphism of order two (a** = a for all 
a E A); and (ii) a linear mapping C from A (or a subalgebra) to  the complex numbers 
[l]. Part  of the elements of A,  euphemistically called observables, correspond to  
physically measurable quantities; those elements that may be represented as w = aa* 
and satisfy C(w)  = 1 characterize the state of the system; the remaining elements are 
introduced to  obtain a mathematically well-defined theory. The states form a convex 
set where the extrema1 elements, called pure states, satisfy w2 = w. Products of 
elements occur not only in the equations that specify the state symbols but also in the 
expectation values C(wa). The non-commutativity of the multiplication essential for 
describing changes of the state of the system (e.g. the evolution in time): no matter 
whether the transformation is defined globally (w -+ uwu*) or locally (w -+ wx - xw). 

In the traditional formulation of quantum mechanics the observables a, b ,  . . . are 
identified with operators A ,  g, . .  . in a Hilbert space and the anti-automorphism 
a -+ a* with the mapping A -+ A t .  The state symbol is then the density opera- 
tor r/zr and the linear functional that assigns numbers to the operators is the trace 
operation (C(a) = TrA). The product of two operators is defined by the successive 
action on the elements of the Hilbert space; in practical calculations this is reduced to 
the multiplication of matrices. Although this mathematical construction has been used 
in research and education almost exclusively, alternative formulations, were proposed 
soon after the discovery of quantum mechanics. Weyl [2] intoduced a correspondence 
rule for operators (polynomials in the operators x and 9)  and phase space functions 
(polynomials in the real variables E and p )  while Wigner [3] studied the properties of 
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the distribution function W corresponding to a density operator @. In the resulting 
formulation of quantum mechanics every observable a is represented by an ordinary 
function A and the involutive anti-automorphism a - a' appears as complex conjuga- 
tion A + A * ,  The non-commutative composition law that corresponds to the product 
of two operators was derived by Groenewold [4]; the commutator obtained from this 
'product' is now known as the Moyal bracket [5]. The complex number C(a) turns 
out t o  be proportional to  A ,  the average of the function A obtained by integration 
over its domain. This phase-space formulation of quantum mechanics is now well doc- 
umented (see, e.g., [e-81) but still comparatively rarely used, probably because most 
quantum mechanical problems are by no means easier to solve in  this form than in the 
usual Hilbert space formulation. However, this description of quantum mechanics has 
an appealing similarity with classical statistical mechanics and is therefore extremely 
useful in discussing quantum corrections to  classical results. In the limit h 1 0 all 
observables commute while h times the Moyal bracket approaches the Poisson bracket 
of classical mechanics. 

Another quasiclassical description of quantum systems is related to coherent states 
[9]. For a spinless particle in one dimension these states can be labelled by two param- 
eters, say p and z, both varying over the whole real line. Expectation values for these 
states exist for a large class of operators including bounded operators and polnomials 
in x and 6. This fact can be used to  assign to  each operator A in this class a function 
A ( p , z ) ,  the so-called Q representative of A. (For a large variety of operators there 
also exists a second function A ' ( p , q ) ,  called the P representative which is uniquely 
related to  A ( p , q ) ,  but this is not used in the following discussion.) This phase-space 
representation of observables was originally studied for the harmonic oscillator [lo] 
and modes of the electromagnetic field (hence the name 'coherent states' [ll]). Later 
on the concept of coherent states and the related Q representation of operators was 
also introduced for spin systems [12-141 and finally generalized to  other systems whose 
state space carries an irreducible representation of a Lie group [15,16]. In all these 
examples the relationship between the Q representatives of A and At is given by com- 
plex conjugation as was the case in the Wigner-Weyl formalism; likewise the trace 
operation is always transformed into an integral over the domain of the Q representa- 
tives. To obtain a closed mathematical structure that is fully equivalent to  the usual 
Hilbert space formulation of quantum mechanics one also needs a composition law for 
the Q representatives which replaces the product of operators. In view of the exten- 
sive discussion of coherent states (see, e.g., [9] for further references) it is surprising 
that  general formulae of this kind are apparently still lacking. What can be found in 
the literature are only formulae for the trace of the product of two arbitrary operators 
(here the P representatives enter beside the Q representatives [9]) or formulae where 
one of the factors belongs to  the Lie algebra [17-191. 

In this paper a general product formula is derived for systems related to compact 
semi-simple Lie groups. To make the presentation self-contained some facts from the 
representation theory of these groups are reviewed in section 2 before the formula is 
derived in section 3. In section 4 the general scheme is applied to SL"(2) (coherent spin 
states) and the corresponding formulae for the non-compact Heisenberg-Weyl group 
H(4) (coherent oscillator states) are obtained by contraction in section 5. Finally our  
conclusions are summarized in section 6. 
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2. Basic concepts and notation 

In this section some elements of the representation theory of compact semi-simple Lie 
groups are briefly reviewed; a detailed discussion is found in many textbooks on group 
theory (see, e.g., [20-221). 

Let G be a compact group with elements g. The complex-valued functions defined 
on G form a Hilbert space L 2 ( G )  which is separable for all groups of physical interest. 
The scalar product in L 2 ( G )  is defined by means of the Haar measure dp(g) which 
is uniquely determined by G up to a normalization constant. If G is a Lie group the 
elements g may be parametrized by a set of real coordinates 7 = (q l ,  v 2 , .  . .). There 
always exist global coordinates which label the group elements uniquely except for a 
set of measure zero that may be neglected in the following considerations. Accordingly 
functions on 6 may be identified with functions of the global coordinates (f(g(q)) = 
F ( v ) ) .  In the Hilbert space of these functions it is sufficient to  consider analytical 
functions because these are dense in L2(G,  77). The Haar measure becomes a weighted 
integral over the coordinates, the weight function p ( v )  being uniquely fixed by the 
condition s p ( v )  dq = 1. In L 2 ( G ,  7) the scalar product and the norm are defined by 

( 4  B )  = J A ' ( v i W v )  dv lIA1l2 = ( A J ) .  (1) 

For group elements in the neighbourhood of the unit element it is often more conve- 
nient t o  use other parameters than the global coordinates 17, namely canonical coor- 
dinates ( for which g(()-' = g(-(). 

A unitary operator o R ( g l )  in L2(G)  is assigned to each group element g1 E 6 
through [cR(gl ) f ] (g)  = f (gg l )  (right-regular representation of G). If g1 = g(<)  and 
9 = d77) then 

~WF)FI(v) = f (g (v )g (O)  = !(do)) = F ( o )  (2) 

For given coordinates ( and v the square matrix @ ( q )  is determined by the multipli- 
cation law of 6. For analytic functions 

where the operators 

are self-adjoint because the operators OR(<) are unitary. As the commutation relations 
of these operators fix the multiplication law of G in the neighbourhood of the unit 
element the set of complex linear combinations of the operators (5), endowed with 
the commutator as Lie product, is isomorphic to the complex Lie algebra g of the 
group G. If this algebra is semisimple it is possible to choose as basis of g operators 
H p ,  . . . , H p ,  E:, E;, . . . , E:,, E ? p , .  . . for which 
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since the expansion coefficients with respect to the operators I?: are real for H p  and 
complex conjugate for E g a ,  and which satisfy the following canonical commutation 
rules. 

In these equations the root vectors LY = ( a l , .  . . ,ar)  are assumed to  be normalized 
according t o  

Copj = 6 i j  
a 

and the integers n and m are uniquely determined by the pair of root vectors CY and 
p;  if Q + j? is not a root vector Na,p  = 0. In general there exist infinitely many linear 
combinations of the operators (5) that satisfy equations (6) and (7); in the following 
we consider one fixed set of such operators. In addition to these operators it is also 
interesting t o  consider multiple products of the non-commuting operators I?: and 
linear combinations thereof, especially those that commute with all operators of this 
form. All these commuting polynomials may be generated from T polynomials of the 
lowest order, the so-called Casimir operators Cp, . . . , CF. 

By complete analogy with the right-regular representation a left-regular represen- 
tation may be introduced through [oL(gl)f](g) f(g;'g). To simplify the calcu- 
lation of the corresponding differential operators K i  it is convenient to  introduce in 
C2(G) an involution f -, f# through the definition f# (g )  = f(g- ')*.  This implies 
UL(g) f# = [oR(g)  f]# and entails the following relations for the functions of the 
coordinates q and q-l: 

g(q)-l = g(q-1) F # ( q )  = F(Tj-1)" O L ( [ ) F #  = [O 'R( ( )F]# .  (9) 

If the generators I?k are related to  the unitary transformations oL as the correspond- 
ing right operators were related in (4) then 

Here k# means that  (i)  in I? the coordinates VI are replaced by the coordinates 
(q)- l  in all functions and differential operators; and (ii) the complex conjugate of 
this expression is taken. Although the operators (10) differ from the operators ( 5 )  
their definition entails that  they obey the same commutation rules. The operators 
I?:, . . . , E : ,  . . . are related to  the operators A?, . . . , E : ,  . . . by 

Ab = -A?# E; = -E:_",# (11) 
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and therefore also related to  each other by equations (7). All operators belonging 
to  the left-regular representation commute with those derived from the right-regular 
representation and the Casimir operators may be chosen in such a way that 

e!- = = ci = e:. (12) 

Since the self-adjoint operators H k ,  Hp and Ci, commute with each other it is 
possible to  find common eigenfunctions. The eigenvalue equations 

have 71: linearly independent solutions where n,, is an integer characterisic for the joint 
eigenvalue A = ( A l ,  . . . A T ) .  The space spanned by these functions is invariant under 
the operators of both the left- and the right-regular representation. The remaining 
eigenvalue equations are 

HLTfi,A,l = X:TC,xll H? T,?,,,, = A:/T) A l l .  (14) 

The joint eigenvalues A’ = (Al, .  . . , A,) and A” are called weights and range over the 
same set of vectors. Equations (14) admit in general several linearly independent 
solutions but there exist weights Xe such that the solution is non-degenerate for A’ = 
-A” = A e .  One of these weights is selected by a convention and called the maximal 
weight; in the following this weight is denoted by A.  For the solution of (14) with 
A/  = -A” = A 

for all ‘positive’ root vectors a .  The eigenvalue equations determine the function T t - x  
up to  a factor that  is fixed by the convention 

Note that  (16) entails 

Further solutions of the eigenvalue equations (13), (14) are obtained by applying a 
sufficient number of operators Eka  to the function TC-x. Let 

(18) * p  = fa * p & .  . . f y  

be ‘Gel’fand-Tsetlein patterns’ [23,24] that label the operator products 

E*p = (FE*7).  . . (F,@*p)(F,@*,J. (19) 

It follows from the commutation relations (7) that E ! p T t - x  is a solution of (14) 
belonging to  the weights 
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and A’’ = -A, which is normalized to 

IIE_”,q-Xl12 = IIE’+R,q-xl12 = ( A  I P) l lq -A l12 .  (21) 

The  factors ( A  I p )  may be calcuated using relations (7) and (15). From the commu- 
tation relations (7) and the eigenvalue equations (14) it  follows tha t  

(A  I P) 1 (A,  .)(A - a lp) .  . . ( A  - a - P - . . . (22) 

i 

By this procedure one obtains n,, orthogonal solutions of (13), (14) tha t  may be 
labelled by a fixed set of patterns { - p }  including the pattern p = 0. 

( A  I 0) = 1 E )  = -Et = i (unit operator). (24) 

If the operators 
orthogonal solutions of (13),  (14) are generated. 
labelled by indices p ’ ,  p” E { + p }  . 

p‘ E { + p } ,  are applied to  one of these functions nA new 
This finally yields n i  functions 

(25) Dpl ,p l l  A *  = -w(A,p’)w(A,p’ ’ ) ’ (A I p ’ ) - l J 2 ( A  I p ‘ I  ) -112 E-pl - L  E + p l l T ~ - A .  “ R  

In ( 2 5 )  the numbers w ( A , p )  are phase factors that  are fixed by conventions (w(A,O) = 
1). 

The  functions (25) have the following properties. 
(i) Under the involution they are either invariant or correlated in pairs 

D$:$ = Dp^‘:lp,. (26 

(Dp?~pllr DY:,,,) = n-l6 A A , N  6 P l , r 1 6 p l l , r , , .  (27) 

(ii) They are orthonormalized according to  

(iii) They engender an irreducible representation of the Lie algebra g.  

The representatives K t  of the operators I?k are Hermitian matrices from which the 
matrices Hi, E, representing the operators H ) ,  E; are obtained by linear combina- 
tions: 

H;Dtl:pt, = + (Ht)  D$:p,l = +(A - p’)Dt,:p, ,  
P ‘ > P ‘  

= +  c 
P 
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(iv) The functions ( 2 5 ) ,  both under the operators 0' and UR,  transform according 
to  a unitary irreducible matrix representation (IRREP) of 6: 

The explicit form of the matrices DA depends on the parametrization of the group 
elements g.  

Up to now the parameters 7 were only assumed to  be global coordinates. We now 
assume that  these coordinates are adapted to  the Cartan decomposition ( G ) ,  (7) of the 
Lie algebra g. Let 'FI be the Abelian subgroup of 6 generated by the commuting self- 
adjoint operators f ip, .  . . , H F  and vH = r f , .  . . , # be the corresponding canonical 
coordinates. Then the coordinates of the unit element of 'FI are qf = 0 and 

The remaining coordinates 17' label the coset representatives in the decomposition 
6 = CY. 

(34) 9(rlC, V H >  = 9(rlC, 0)9(770 C H  I rl 1 S(rlC1 0) E c g(r l0  C H  9 77 ) E 'H 

For these coordinates the operators I?: are of the form 

and 

3. The product formula 

Consider a quantum system whose state space is a carrier space of the IRREP D* of 
the compact semisimple Lie group G .  
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The quantum mechanical operators Rk = kl satisfy the same commutation relations 
as the operators I?? acting in Lz(G,  7). Therefore their complex linear combinations 
contain operators fii, Ea that  satisfy also equations (e), (7). Their action on the 
states $ ( p )  is given by 

whence 

J@+&(O) = 0 W ( A , P ) * ( A  I P ) - 1 ' 2 f i - p $ ( o )  = $ ( P ) .  (39) 

4(7) = W M P O )  (40) 

Coherent states are introduced by the definition 

where for the present p o  is some fixed pattern belonging to  the set { p } ;  for reasons that 
will be discussed below p o  will be chosen later on to be the pattern p = 0 corresponding 
to  the maximal weight [16]. The function A assigned to  the operator A ,  the so-called 
Q representative of the operator, is given by 

471) = ($(VI1 &(V), = ($(POL w ? ) t m 7 ) $ ( P O ) ) .  (41) 

I t  follows from (41) that  the Q representative of At is the function A * .  As a conse- 
quence of the irreducibility of D A  

Tr A = n A  / A ( q ) p ( V )  d7)* (42) 

The  operators of the system form a linear space of dimension n i  which becomes 
a unitary space if a scalar product is introduced by the definition 

(A, 8) = Tk((At8). (43) 

.qpi4w = bp" ,p '+ (P)  (44) 

In this space the shift and projection operators Ekp, 

obviously form a basis. Another basis, that is also orthonormalized in the sense of 
(43), is given by the operators [25] 

where the coefficients of the operators 
decomposes the reducible representation D* x D** FZ D* x D' FZ $ n ( A ,  A ;  K ) D K  

are the elements of a unitary matrix that 
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In (46) the range of the multiplicity index v is 

v = 1, .  . . m(Al A; Ii') 5 n A .  (47) 

The  n i  operators (45) are irreducible tensor operators, i.e. they transform according 
IRREPs under the mapping A + U ( g )  A U ( g ) t .  

The Q representatives of the operators (45) are the functions 

which are orthogonal in Ii' and q because of (27) .  Starting from a given set of coupling 
coefficients [Apip' I Ii'qv] it is always possible to pass to new coupling coefficients by 
means of a unitary transformation in the multiplicity index such that the functions 
(49) also become orthogonal in the index U. 

( z ; t , 9 , u  1 q t ,  = ' K ,  ,!'9,9! b u ,  u' II[APO'PO I ~ i " ' / v I l / ~ .  (50) 
9" 

If for some Ii' = Ii'' the sum on the right-hand side of (50) vanishes the Q representa- 
tive of this tensor operator is equal to  zero. As has been shown in [26, 271 this cannot 
happen if po refers to  a maximal weight. This is the reason for choosing po = 0 in 
the following, i.e. to  derive the coherent states from the state of highest weight [16]. 
The n i  tensor operators (45) are then uniquely related to  the n i  functions (49) which 
span a subspace of L2(Gl 7 ) .  I t  is obvious that this entails a one-to-one correspondence 
between operators and functions in this subspace. 

If the relation between operators and functions is one-to-one the Q representative 
of the product of two operators is uniquely determined by the functions corresponding 
t o  the two operators and by the order of the multiplication. 

AB = c e c = B. (51) 

The derivation of a formula for the 'product' A o B is based on the following sequence 
of equations: 

(S(P)l m+2;, 9 ,  U h ) W ) )  

= ( w ( x l P ) ( x l P ) - ' / z ~ - , ~ ( o ) l  D,'f,,(V-lP;, 9 / ,  " N O ) )  

= w ( x l P ) * ( x l P ) - ' / 2  c(+(o)l e,, ' .  .E+& 9 ! , u $ ( o ) ) q ; l ( d  
9 l  

9' 

= w(xlP)*(xlP)-1/2 

= w(Xip)*(X,p)-'/2t:p C($(o)l Z;, 9 ~ ~ , u ~ ( ~ ) ) ~ ~ ~ ~ 1 ( ~ ) ~  

( d J ( O ) >  %,911,"lcl(0)) (E:? ' .  . E:,)q,/,9, q$(??) 
9' ,P 

(52) 
9 I t  
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In the first of these equations (39) and (48) is used; the second equation follows from 
relationships analogous to (6); the third from (48) and (39); and in the last equation 
(30) and (19) have been used. Since (52) may be extended to  any linear combination 
of the tensor operators (45) 

( $ ( P ) 1 ~ ( 7 7 ) + m M O ) )  = 4 A  P)*(Al P)-”2[fi:pB1(d (53) 

for all operators B.  The complex conjugate of (53) is 

if Bt = A. Multiplying (54) with (53) and summing over all patterns one finally 
obtains the product formula 

It  should be noted that relation (53), from which the product formula (55) fol- 
lows, implies a number of differential equations the functions D$Tp,, have to  satisfy in 
addition to  those tha t  follow directly from their definition (25).  To see this consider 
the function 

where the operator E#,pl,  is defined in (44). If in (53) B is chosen to be this operator 
one obtains 

Q ; t , P f l ; P  = w(At  P ) * ( A  I P ) - ~ ” @ ~ ~ Q ~ J , ~ / J , ~  (57) 

which is equivalent to the following two sets of equations: 

(59) E R *  DA* 
+p p‘,O = 0. 

Whereas (58) is contained in (25) the differential equations (59) constitute equations 
of a form not met up to now; they contain the operators E’+”,’ whose properties have 
not yet been discussed. In the example discussed i n  section 4 relations (59) follow from 
equations (15) tha t  were also used in the present derivation of (55) in form of the first of 
equations (39). But irrespective of whether (59) is derived via the introduction of the 
tensor operators (45), or in some other way, the full  set of equations (58, 59) suffices to 
derive the product formula (55). This follows from the fact tha t  the functions Q$,p,,,o 

are nothing but the Q representatives of the operators E$,p,, i n  terms of wllich any 
other operators may be represented. 

There exist many global coordinates 77 tha t  may be used to define coherent states 
and the corresponding Q representatives. However, the most economic way to relate 
operators t o  functions is t o  use coordinates adapted to the Cartan decomposition of 
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the Lie algebra. In  this case the Q representatives vary only over the coset coordinates 
qc as is easily seen from (40),(37), and (36). 

A(qC,  q H )  = A ( C ) ( q C ) .  (60) 

Since this relation holds also for the Q representatives of the tensor operators (45) no 
pattern q' with weight n - q' # 0 can contribute to the sum (49); this corresponds to 
a selection rule for the coupling coefficients in the decomposition (46). 

The  differential operators (35) occurring in the product formula (55) depend on 
all coordinates qk but the dependence on the coordinates 7: drops out in each term 
of (55). 

With this definition of the differential operators E::') the product formula for the Q 
representatives (60) reads 

P 

We close this section with a comment on the 'classical' or 'large N '  limit. Here 
one considers a sequence of representations where 

J 

and N (K h- ' )  tends to infinity. In this limit the value of the function A o B a t  
position q approaches the product A ( v ) B ( v ) ,  the largest 'quantum corrections' being 
of order N-' (cf (22)).  

[ A  0 BI (4 = A(v)B(rl) + (A I a )  [ E 3 1  ( V I  [q31 (17) + (65) 
+a€  { P I  

Accordingly the function corresponding to the commutator of two operators vanishes 
as A'-'. However, the Q representative of the scaled commutator approaches a finite 
limit which defines the 'Poisson bracket' of the classical theory. 

N [ A  0 B - B 0 A ]  = N(X [ a )  { [E;,RLA] [E;,"J?] 
+ a E l P }  

- [&;,";B] [E'+RaA]} + O ( N - ' )  
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4. Coherent spin states 

In this section the product formula (59) is specified for the group SU(2) ,  i.e. for Q 
representatives related to coherent spin states. If the group elements are labelled by 
Euler angles w = 8, $) then the domain --s < 4 < 7r, 0 < 6 < x ,  - 2 ~  < $ < 2 x  
contains all elements of SU(2) up to a set of measure zero (which includes the unit 
element (O,O,O)). The weight function is p(w) = ( 1 / 1 6 ~ ~ ) s i n O  and the analytic 
functions in L2(SU(2) ,w)  turn out to be periodic in all three variables, the common 
period being 47r. Because of this periodicity it is possible to choose the angles w - l  = 
(-$, -8, -4) as labels of the element g(w)-' although these parameters range over a 
different domain than the coordinates w .  The subgroup 31 of section 3 consists of the 
rotations about the z-axis and the relation of the Euler angles to the coordinates 77 of 
the preceding section is given by 

C C H  77 = (771 ,772 I 7 7  ) = ( 4 l b m  

11-1 = ( ( 7 7 - 1 ) f l  (77-1):1 (77-" = (-*, -8, -a). ((37) 

The infinitesimal generators of the right- and left-transformations are denoted by 
j instead of k and expressed in terms of the Euler angles to indicate their relation to 
the angular momentum operators of wave mechanics. 

a* a )  
a a ( 84 ae j k  = i + sin 4 cot e- - cos 4 -  - sin 4cosecO - 

. a  
ad 

j3" = -I--. 

The operators (68) and (69) satisfy the same commutation relations as angular mo- 
mentum operators for h. = l ([jl, j,] = i j 3  etc). The Lie algebra is of rank one and 
the operators 

form a basis adapted to the Cartan decomposition. The root vectors are &a = z t l / f i  
and the canonical commutation relations are 
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In terms of the Euler angles the differential operators (66) and the Casimir operator 
amume the following form: 

k k 

(74) 2cose-- 
a a 2  = - [& + cot e- ae + cosec28 (w- a:;* + 31 

For the present example the solution of the differential equations (13-15), that  
satisfies the boundary condition (16), is 

where 2 s  is a non-negative integer. The Gel’fand-Tsetlein patterns are labelled by 

IC = 0, .  . . ’ 2 s .  (76) 

The operators and I?’+”o are given by (24), and the shift operators for K 2 1 read 

Using the commutation relations 

that may be derived from (71) by induction, one obtains the normalization constants 

I; ! ( 2 s )  ! 
22K(2S - K)! ( S  ] I C )  = (79) 

If all phase factors w ( S ,  1;) are chosen to be equal to (+1) then the function 

(80) 
S(S+l)* 

DKt,Kil ($ io !$ )  = D ~ - K ! , S - K I ( ( ~ I  0 ,  $)* 

derived from (71) according to (25), is nothing but the complex conjugate element of 
the usual rotation matrix Ds [28, 291 at  position M’ = S - I { / ,  M” = S - I<’/, The 
explicit form of these matrix elements can be calculated from 
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and the following recurrence relations: 

One half of these relations results from definition (25), specialized to 6 = S U ( 2 ) ,  
while the other half may be deduced from these equations, the commutation relations 
(67) ,  and the differential equations the function (81) satisfies (cf (77 )  and (13)-(15)). 
Because 

equations ( 8 3 )  include condition (59) so that the product formula may be derived from 
the recurrence equations ( 8 2 ,  8 3 )  (cf section 3 ) .  

From ( 7 2 )  the shift operators acting on functions of the coset variables q5,O may 
be derived; one finds .l?:r) = 1 and, for Ii‘ 2 1, 

The  resulting product formula 

clearly shows tha t  the classical limit is approached for S --* CO. 

It is also instructive to  consider the tensor operators (45) and their Q represen- 
tatives (49) in this example. As S U ( 2 )  is simply reducible the multiplicity index U 
may be dropped. I t  turns out that  Ds* - DS and the coupling coefficients are closely 
related to the Clebsch-Gordan coefficients: 

(S s - A-/’ + M s - s + I<’/ 1 L M ) .  [ S I<’ S K!’ 1 L L - M ]  = bKi ,K , , -h f l  . 2 (  S- K ” )  

( $ 7 )  

The Q representatives of the tensor operators are therefore 

ZLf(q5, 6 ,  $) = i2s( s s s - s I L 0 )D:f,o(q5,Q, $1’ 

Accordingly the Q representative of any other operator is a linear combination of 
spherical harmonics Y L M ,  the integer L ranging from 0 to  2 s .  The  one-to-one corre- 
spondence between spherical harmonics and tensor operators allows one to assign to 
each phase-space function a linear combination of tensor operators where these oper- 
ators may be represented as polynomials in the angular momentum operators Jk (see 
[25]  and the references cit,ed therein). 
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5 .  Coherent oscillator states 

It is well known that the compact group U(2) may be contracted into the non-compact 
group ‘H4’ where a subset of the rotation operators is transformed into unitary op- 
erators that  multiply like the Weyl operators ?(P ,Q)  (see, e.g., [20, 301). Here this 
relation is used to  derive a product formula for the Q representatives that are obtained 
from the ‘canonical’ coherent states studied by Schrodinger, Glauber and others [9]. 

To see the relation of these coherent states to  the coherent spin states of the 
previous section consider first the functions 

= ~ i - ~ ( c o s  p) exp[i(S - ~ ) a ]  = (-1)’ exp(iScr)Fi(cr, p). (89) 

For large S and small 6’ the associated Legendre functions P:-N are similar in form 
to the oscillator eigenfunctions 

for 2 > 0. In the limit S + m this similarity becomes a quantitative relation if the 
variable p is scaled according to  

F ~ ( ( Y ,  P)  - F N ( D ,  Z) = ( - 1 1 ~  exp(-iNa)x,(z). (92) 

Relation (92) is easily verified for N = 0; the remaining limits emerge from the 
recursion relations (82). If the operators A$ are defined as 

equations (82) give 

’ip; = JN + 4 i fF;*l + o(s-’). 
Here the shift operators for the functions (89) are 

(cf (73)), so that 

(94) 

(95) 

(96) 

and (92) follows from (94) and (90) 
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Under the rotation operators the functions (89) transform according to  the IRREP 
Ds of SU(2) (cf (31)) 

~ ( 4 , ~ ,  $ ) D ~ : N , o  = t ) z - M I s - ~ ( 4 ,  8, $ ) D ~ * _ M .  (97) 

Rs(4, e,  $1~: = C~XP[-~S(~  + 4 ) 1 ~ ; , ~ ( 4 ~  0 ,  4)~; 

M 

This equation may be transcribed as 

(98) 
M 

where 

P ( 4 ,  e,  $) = exp(-iSa)iT(4, e, +) exp(iS’cr) 

A&,N($, e l  $) = exP[iS(+ $ ) ] D ~ - M , ~ - N ( ~ I  01 $1. (100) 

(99) 

and 

As we are interested in the form of the functions F’i near the equator the rotation 
angle 8 has to  be restricted t o  extremely small values. 

(S  - CQ).  (101) 
W e = -  Js 

In addition we set $ = -4 since the value of the third angle is irrelevant for the Q 
representatives. The remaining unitary transformations are then of the form 

Here the parameters P, Q are related to the parameters 4,  W by 

Q f iP = W exp(fiq5). (103) 

The infinitesimal generators of the transformations (102) are 

and satisfy the commutation relations 

[jf, j,”] = ii + o(s-’). (105) 

From these definitions follows the multiplication law 

‘I;S(P2,Q2)’I;s(P1,Q1) = exp(iR)?’(P,Q)+ O(S-l)  

P2 + Pi = P Qz + Q1 = Q P2Q1- Q2PI = 2R (106) 

which approaches the multiplication law of the Heisenberg-Weyl group in the limit 
S 4 00. The corresponding limits of the generators, 

J+Q J ; + P  A; + At A? + A  (107) 
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satisfy the same commutation relations as the position and momentum operators 
( h  = 1) and the creation and destruction operators of the harmonic oscillator, respec- 
tively. Therefore the properties of coherent oscillator states may be obtained from 
those of the coherent spin states although the limits of the basis functions and op- 
erators contain a second variable that does not occur in the wave mechanics of the 
harmonic oscillator. 

A matrix representation of the Weyl operators P(P,  Q ) ,  the limits of the operators 
(102), is obtained from the functions (100) for S + 00: 

These functions may be calculated from 

and the recursion relations that emerge from (82, 83): 

The shift operators occurring in these equations are defined by 

and therefore assume the following form: 

The solution of (109-111) is 

If $ = -4, and 9 and W are expressed in terms of P and Q (see (103)), the matri- 
ces A(P,  &) constitute a projective IRREP of the Heisenberg-Weyl group; this repre- 
sentation coincides with the one obtained by a calculation where conventional Weyl 
operators and oscillator eigenfunctions have been used (cf [31] p 201). 
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(cf (56), (57)). The  functions (117) are the Q representatives of the  shift and projection 
operators which form a basis for the operators in spin space. Studying the limits 
of the functions (117) we implicitly focus on finite linear combinations of the oscillator 
shift and  projection operators EM,,; more comprehensive classes of operators can be 
introduced by considering sequences of such operators. The  Q representatives (1 17) 
are related through the recursion equations 

2Ekl/fiQ$,N = J M ( 2 S  - M + l ) Q h - l , ~  - d(N + 1)(2S - N)Q&,,+, 

which follow from (82, 84). In the limit (101) these equations assume the form 

Ais,,,  = ~ ~ Q M ~ I , N  - ~ - Q M , N * ~  (119) 

where the differential operators Ai are defined by the following limits. 

Equation (119) allows one to calculate the functions Q M , N  recursively from Qo,o .  

QM,N($, W )  = [2M+NM!N!]-’/2WM+N exp[-i(M - N ) 4  - iW2]. (121) 

T h e  same result is obtained from (116) and (114), and (103) may be used to express 
QM,,, as a function of P and Q.  A general Q representative, that  belongs to the class 
under consideration, is therefore the product of a polynomial in the variables P, Q and 
the  exponential exp{-(PZ + Q2)/2}. 

The  functions (116) may be calculated from the functions (117) because 

this relation follows also from (82-84). In the limit (101) 
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and 

As this equation corresponds to relation (54) the product formula for the Q represen- 
tatives considered here follows immediately. Using the notation 

(125)  
1 

(-A:)K = exp(-iI<$)--- 

Do = i 

one finally obtains 

The  relation to  classical mechanics becomes more transparent if the variables 

are used instead of the variables P, Q .  The Q representatives of position and momen- 
t u m  operators are then the functions q and p and the K t h  term of (127) is proportional 
to the  K t h  power of h. Moreover 

as is required by the correspondence principle. 

6.  Conclusion 

In ‘quasiclassical’ or ‘phase space’ formulations of quantum mechanics operators are 
replaced by functions. To obtain a fully equivalent description of quantum systems all 
mathematical operations tha t  are essential for obtaining a result in standard quantum 
mechanics have to  have counterparts in the non-standard formulation. The  standard 
operations include the trace of an operator, the relation between an operator and its 
adjoint, linear combinations, and products of operators. Whereas the equivalent of 
all these operations is well known in the Wigner-Weyl formalism, product formulae 
for functions related to coherent states ( Q  representatives) have not been discussed i n  
full generality up to now. 

In this paper a product formula is first derived in general form for Q representatives 
related to an arbitrary compact Lie group. This formula is then specified for coherent 
spin states. Because of the close connection between these states and the canonical 
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coherent states studied by Glauber and others a similar product formula can also be 
derived for this type of expectation values. Up to now the lack of such a formula 
prevented the phase space description based on coherent states to become a true 
alternative to  the Wigner-Weyl formalism. Now it is possible to compare these two 
schemes and to  investigate whether in a given problem one is preferable to the other. 

The mere reformulation of a problem rarely helps to solve it. However, it has been 
shown in many instances that equivalent but formally different descriptions of one 
and the same problem lead to different approximation schemes, or help to elucidate 
its relation to other problems. It is to  be expected that the formulae derived here are 
of use in a systematic calculation of quantum corrections to  classical results. As these 
formulae relate Q representatives of more complicated operators to those of simpler 
ones, they should also simplify the calculation of expectation values for coherent states. 

References 

Thirring W 1979 Lehrbuch der Theoretischen Physik vol 3 (New York: Springer) 
Weyl H 1927 Z .  Phys. 46 1 
Wigner E P 1932 Phys. Rev. 40 749 
Groenewold H J 1946 Physiea 12 404 
Moyal J E 1949 Proc. Camb. Phil. S o c .  45 99 
De Groot S R and Suttorp L G 1972 Foundations of Electrodynamics (Amsterdam: North- 

Tatarskii V I1983 Sou. Phys. Usp. 26 311 
Hillery M, O’Connell R F, Scully M 0 and Wigner E P 1984 Phys. Rep. 106 121 
Klauder J R and Skagerstam B S 1985 Coherent States (Singapore: World Scientific) 
Schradinger E 1926 Naturwiss. 14 664 
Glauber R J 1964 Quantum Optics and Electronics ed C DeWitt, A Blandin and C Cohen- 

Klauder J R 1963 J. Math. Phys. 4 1058 
Radcliffe J M 1971 J. Phys. A :  Math. Gen. 4 313 
Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Reu. A 6 2211 
Perelomov A M 1972 Common. Maih. Phys. 26 222 
Gilmore R 1974 Rev. Mer.  d e  Fisica 23 143 
Glauber R J 1963a Phys. Rev. 130 2529; 1963b Phys. Rev. 131 2766 
Narducci L M, Bowden C M, Bluemel V ,  Carrazana G P and Tuft R A 1975 Phys. Rev. A 11 

Gilmore R, Bowden C M and Narducd L M 1975 Phys. Rev. A 12 1019 
Gilmore R 1974 Lie Groups, Lie Algebras, and Some of Their Applications (New York: Wiley) 
Gourdin M 1967 Unitary Symmetries (Amsterdam: North-Holland) 
Dirl R and Kasperkovitz P 1977 Gruppentheorie (Braunschweig: Vieweg) 
Gel’fand I M and Tsetlein M L 1950 Dokl. Akad. Nauk SSSR 71 825, 1017 
Gilmore R 1970 J .  Math. Phys. 11 3420 
Kasperkovitz P and Dirl R 1975 J. Math. Phys. 15 1203 
Klauder J 1964 J. Math. Phys. 5 177 
Simon B 1980 Commun. Math. Phys. 71 247 
Rose M E 1957 Elementary Theory of Angular Momentum (New York: Wiley) 
Messiah A 1962 Quantum Mechanics vol 2 (Amsterdam: North-Holland) 
Gilmore R 1972 Ann. Phys. 74 391 
Wolf K B 1975 Group Theory and I t s  Applications vol 3 ed E M Loebl (New York: Academic) 

Holland) 

Tannudji (New York: Gordon and Breach) 

973 

p p  190-249 


